
AGNI: A framework for
Distributed Scripting

M.Ranganathan
Multimedia and Digital Video Group

National Institute of Standards and Technology

The AGNI Team

• M.Ranganathan

• Laurent Andrey

• Virginie Schaal

• External Collaborators:
– Anurag Acharya UCSB

• Group Manager: J-P Favreau

Goals of the AGNI Project

• Design and build a secure , extensible, fault-
tolerant infra-structure for peer-to-peer
event-driven (a-synchronous) applications.

• Develop peer-to-peer event-driven
applications based on developed infra-
structure.

Application Scenarios

• Distributed control.

• Conferencing, conference control.

• Distributed testing, logging and monitoring.

• Distributed Interactive Simulation.

• Network Management.

Design Philosophy

• Distributed systems designer should be able
to:
– 1. Decide logical application structure.

– 2. Application functionality.

• Independent of how application components
are mapped to physical resources
(separation of logical design and physical
design).

Design Considerations

• Extensibility and flexibility.

• Fault tolerance.

• Re-configurability.

• Security.

• Heterogeneity.

Event-oriented
programming model.

• One-way message oriented.

• Message arrival triggers execution of event
handler
– Event handler can send message to another

communication end-point.

Abstractions

• locations, streams, agents and events.

• Location maps to a machine.

• A Stream is a named communication end-
point.

• An Event is a change in system state -
potentially triggers agent execution.

Distributed Streams

STREAM (global name, ordering guarantee)

Agent Agent Agent

Messages

Attributes of a Stream

• Ordering guarantee.

• Unique global name.

• Assigned Home Location but can live on
any workstation (that allows it).

• Can migrate between workstations.

• Has 0 or more Agents associated with it.

External and Agent Scripts

 Agent Daemon

Agent Scripts (internal commands)

Application scripts
(external commands)

Re-configurability

• Change the location of computational
components dynamically while the system
is in execution.

• Message ordering guarantees are
maintained while system is being re-
configured.

• Useful for latency reduction/load balancing.

System Features

• Agents may send messages to streams.

• External programs may send messages to
streams.

• System can re-configure itself between
messages.

• Multiple points of control are allowed.

System Organization

HOME LOCATION
 RELIABLE

Cache

(Coordinator - could be integrated
 with web server)

Peer

State

Control traffic Control traffic

Data Data

Cache
Peer

State

Cache
Peer

State

Agent script

• Agent script consists up to 5 TCL scripts:

– on-init : Initializer.

– on-append: Runs message is appended.

– on-relocation: Runs at destination after
move

– on-failure: Runs at home node on failure.

– on-exit: Finalizer (cleanup script).

Resource-control Architecture

• Two-tiered Resource-control
Architecture.

• Per daemon resource-controller:
• Controls resource usage on a per Agent-Daemon

basis.

• Per stream resource-controller:
• Controls resource usage on a per-stream basis.

Per-Daemon Resource Controller

• Stationary resource-control agent at each
location

– specified at startup time.

– Can only be registered locally.

• Approves/denies stream creation/ arrival at
a location.

Per-Stream Resource Controller

• Can be specified at Stream creation.

• Intervenes on append, agent attach, re-
location, arrival.

• Works as a meta-agent.
– Gets control before user-registered agents get to run.

– Can decide which user-registered agents get to run.

– Can execute commands in the context of the user
agents.

Per-Stream Resource-Controller

STREAM (global name, ordering guarantee)

Messages (triggers on_append event)

Agent 0

on_init
on_append
on_relocation
on_exit

Resource-control meta-Agent

 resctl_on_append

Agent 1

on_init
on_append
on_relocation
on_exit

Agent Daemon Organization

Stream (name)Stream (name)

LocationLocation

AgentAgent

Stream (name)Stream (name)

BriefcaseBriefcase

Tcl InterpTcl Interp

POSIX ThreadPOSIX Thread

AgentAgent
BriefcaseBriefcase

Tcl InterpTcl Interp

POSIX ThreadPOSIX Thread

AgentAgent
BriefcaseBriefcase

Tcl InterpTcl Interp

POSIX ThreadPOSIX Thread

AgentAgent
BriefcaseBriefcase

Tcl InterpTcl Interp

POSIX ThreadPOSIX Thread

Virtual MachineVirtual Machine

Application : Agent Monitor

• Track the location of agents in the
distributed system.

• Reactive GUI application.

• Allow user to easily deploy agents using a
GUI driven management tool.

Agent monitor organization

Tk commands

Monitor stream
Resource Control Agent

Arrival event

Monitor GUI

Application:
Tk-Collaborative Toolkit

• Enables collaborative sharing of arbitrary
TK applications.

• Self-reconfiguring distributed application.

• Reconfigures itself to minimize latency for
the interactive user.

Application:
Tk-Collaborative Toolkit

Event Dispatcher

Tk Application Tk Application

Tk Events
Tk Events

Mobile

Tk Events Tk Events

Tk Events

Application:
Tcl/TK Collaborative toolkit

Central stream (mobile)

Local Stream (fixed)

Local Stream (fixed)

Local Stream (fixed)

Agent

Agent

Tcl/Tk-App

Tcl/Tk-App

Tcl/Tk-App

Tcl/Tk Commands

Application: Agent Debugger

• A tool to debug Agent Scripts.

• Extension of tcl-debug debugger.

• Goals:
– Location transparency.

– Global stepping.

– Global conditional breaks.

Agent Debugger Organization

Debugger GUI
Debugee Agent

Monitor Stream

MBOX

Per-location Controller

Current Status.

• Initial prototype of agent system with
limited features.
– Lacks fault tolerance

– Uses tcp for message passing (lacks
scalability).

– Limited resource-control model.

– Lacks security.

• A few applications have been developed.

Future Work Includes

• Application-driven extension of system
features.
– Adaptive applications for networks.

– Virtual Microscope.

– Distributed testing of collaborative systems.

• Improving the communication scalability.

• Fault-tolerance.

• Security.

